(3y^2-6y+5)=(-4y^2+7y+2)

Simple and best practice solution for (3y^2-6y+5)=(-4y^2+7y+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3y^2-6y+5)=(-4y^2+7y+2) equation:



(3y^2-6y+5)=(-4y^2+7y+2)
We move all terms to the left:
(3y^2-6y+5)-((-4y^2+7y+2))=0
We get rid of parentheses
-((-4y^2+7y+2))+3y^2-6y+5=0
We calculate terms in parentheses: -((-4y^2+7y+2)), so:
(-4y^2+7y+2)
We get rid of parentheses
-4y^2+7y+2
Back to the equation:
-(-4y^2+7y+2)
We add all the numbers together, and all the variables
3y^2-(-4y^2+7y+2)-6y+5=0
We get rid of parentheses
3y^2+4y^2-7y-6y-2+5=0
We add all the numbers together, and all the variables
7y^2-13y+3=0
a = 7; b = -13; c = +3;
Δ = b2-4ac
Δ = -132-4·7·3
Δ = 85
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-\sqrt{85}}{2*7}=\frac{13-\sqrt{85}}{14} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+\sqrt{85}}{2*7}=\frac{13+\sqrt{85}}{14} $

See similar equations:

| y=12*0+6 | | 6d-3d=18 | | 17x-13x=20 | | q-0.7=1.4 | | y=7*0-14 | | 7g-2=42 | | (2x-2)/2x^2−2x−10=0 | | 1/4n+3/1=8 | | 75u+2=12. | | 6n=30+2(n+4) | | 3x-5*0=30 | | 4x-6=1x-2 | | 1/2(6x+20)=1/4(16x-8) | | -6x+6=-1x-1 | | 6n=30+3n(–4) | | −7−6x=-31 | | 5x+29=44 | | 6x-3=11x+1 | | 5/2c=81/3= | | 1/25=5^3x+1 | | 0=13h-4h | | 10x=130—3x | | -17+6x=-59 | | 11n^2-4n-13=-5+10n^2 | | 17+6x=-59 | | s=5+45 | | 1/4x+36=x | | 500-2q=50+q | | -25p-6(3-5p)=3(p-6)-4 | | -96=8x+8 | | 3(n+4)+2=26 | | -66=10x+4 |

Equations solver categories